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ASYMPTOTIC SOLUTION OF ELASTICITY THEORY PRO3LEMS ON 
CRACKS EXTENDED ALONG A SPACE CURVE* 

R.V. GOL'DSHTEXN and L.B. KOREL'SHTEIN 

A class of spatial problems of elasticity theory for cracks extended 
along a smooth space curve is solved by asymptotic methods. The two 
first terms of the asymptotic form of the displacement jumps and the 
stress intensity coefficients are constructed and their dependence on 
the crack geometry is investigated. The problem of an annular crack 
on a cylindrical surface is considered as an example, and results of 
its asymptotic solution are presented for different kinds of loads, 
including taking account of superposition of the edges. 

Analogous, more simple problems on cracks extended along a plane 
curve are considered in /l, 21. 

1. General equations for an extended crack. We consider a homogeneous, isotropic, 
infinite elastic space containing a crack extended along a smooth space curve R = R(l), 1 E 
i--L,Ll (the latter can be closed: R(-L) = R(L)). We introduce tangent, normal, and bi- 
normal directions t(Z), v(Z), b(E) to the curve R that satisfy the Frenet relationships (the 
prime denotes the derivative with respect to t) 

R'-t, t'=kv, v‘= - ,&t + zb, b'=-zv 

where k, a are the curvature and torsion of the curve R. 
We define allowable crack shapes by the relationships 

II I\( L, Iml l<p (4, m, = 0 
where the coordinates (m,, m,,Z) are given by the equality 

x (m,, ma, E) = R + e fm,a' (2) -i- m2a2 (01 

04 

(1.2) 

0.3) 

e is a positive small parameter; the orthonormalized vector triplet ai (i = 1,2,3)isobtained 
from the tripLet v(l),b(l),t (1) by rotation around t(l) by an angle v(I): 

d=vcosq+bsslncp, a*=--vsincp+-bcosrp, a5=t 

the functions p (1) and q(l) are sufficiently smooth, where pi L = 0 (1). For unclosed cracks 
we also require that p(L) = p(--L) = 0 (for closed cracks simply p(L) = p(--L)). 

The crack given by relationships (1.2) is a narrow strip of rectilinear section stretched 
along the middle line of R(1) for small e, where the function p(l) and cp (0, respectively, 
describe the change in crack width and its orientation relative to the accompanying trihedron 
t,v,b. In particular, rotation, flexure , and torsion of the crack surface are allowed. The 
directions c8 and a' here yield the longitudinal and transverse directions on the crack surface, 
while CC' is the normal direction to the crack surface at its middle line (for m,=O). The 
vector triplet a' is rotated according to the following law as it moves along Rfas is easily 
obtained from (1.1): 

a” = A x ai, A= A,a', A,=ksinT, A,=lIc~sq), 
A,=z+cp' 

(here and henceforth, the summation is assumed over repeated subscripts). The components 
At(l) (i = t,2,3) have the meaning, respectively, of rates of flexure, rotation *in its plane" 
and torsion of the crack surface. 

The class of cracks introduced above includes a number of cracks on spatial surfaces, for 
instance along the arc of a circle of a cylinder or cone , cracks along a spiral line, etc., 
as well as all extended cracks of planar planform considered earlier /I, 2/. 

We assume that there is no load at infinity while the forces 

p'(x)= - 7Ix)=p(x), XEC, 

*prikl.Matem.Melchan.,51,5,858-865,1987 
675 



676 

are applied to the crack surfaces, where the plus and minus signs refer to the "upper" and 
"lower" surfaces bounding the domains mz> 0 and %<O, respectively. (As is well-known, 
the boundary conditions mentioned correspond to the problem of external elastic field pertur- 
bation by a crack in a space without cracks). Determination of the elastic fields reduces to 
seeking the displacement jump x(x) on the crack surface 

x(x)=u+(x)- u-(x), x E c, (1.4) 

We will find the asymptotic form of the displacement jump on the crack surface as E- 0. 
Let n (x) (x E GE) be a vector normal to the surface G, 

n (m,, 1) = [dx/dl x ai @)]/I dx/dZ x a1 (1) / = 
aa (I) - em,A, (I) a3 (1) + o (B) 

P(~I, %I I)= -cil(m,, mz9 4nj(ml, E)ei, p(m,, O,E)=p(m,, 1) 

where p is a force vector. 
Tben (/3/, formulas (12) and (10)) , it follows from the Somigliani formula that 

Pm (4 = P it1 - vf G fr) l’P(mi) txf, 19 + (&is) fx), iml + (Is?) 
2v In3 tx) Vii tx),81R -t %n tx) ‘pi. (X), isI - nj (x) *if (X). istm) 

fi = 4s~~' (1 - Y), x z G, 

where p, v are the shear modulus andPoisson'sratio ofthemedium; symmetrization is over the 
subscripts in parentheses, and the harmonic and biharmonic potentials fpij and Qij are deter- 
mined by the formulas 

rpij(x)=SSxi(x')nj(x')IAxI-'dx', lllj(X)=SSXi(x')nj(x')IA~Idx' 
GE G, 

Ax=x‘-xx, xgGe 

(1.7) 

We find the asymptotic of the integrodifferential operator acting on x(x)in (1.6) near 
the crack in the coordinates m,,m,, I (mz#O)S and then by letting m,-+-0 we obtain an 
asymptotic equation in x (m,,E,e) from (1.6). The principal term of the asymptotic form of 
the operator should obviously correspond to the operators of the plane and antiplane 
problems. Consequently, if p denotes the characteristic magnitude of the load 1 P(m,,l) 1, 
the principal term of the expansion of x should be of the order .ap (l)pi p- eLp/p. 

Let us determine in what order (as compared with the principal term of the asymptotic 
form) the mutual influence of the different parts of the crack is felt (which is at a distance 
-L). After substituting (1.7) into (1.6) and differentiating t the kernel of the integrals 
are of the order p / Ax Ima- pL_’ , and integration over the domain with the area -epL--L’ 
yields a quantity of the order of eLm3 X eLa x eLpl p = cap which is two orders of magnitude 
less than the given load. Therefore, the mutual influence of parts of the crack should be 
felt only in the third term of the asymptotic form x (in powers of e). We limit ourselves 
in this paper to seeking the first two terms of the asymptotic form x in the general case, 
which by virtue of the above exposition should be "local", i.e., depend in each section 1 =I, 
of the crack on just the geometry and load in the neighbourhood of this section. 

Taking into account that 

$il(x),if=mii -II*(x), q* (x)=$(Ax.~(xO)(Ax. n(x'))IAxI-ldx' 

relationship f&.6) can be written in the form 

As is seen from (1.8), it is necessary to find the asymptotic expansion of %J, v and 

the operator 9 I ar,ax, in.the coordinates m,, m,,I as e-0. It can be shown for the latter 
that 

aii G f (- i)L(A3_ta,Sa,S - Asail')-& -j- O(l), aii = ai(aJ’ -I- aJhS 

t 1 



677 

where s and t run through the values 1 and 2. 
The asymptotic form of the integrals (~13 and $* is calculated by using the composite 

asymptotic expansions of the integrands as in /l, 2/. This asymptotic form has a rather 
cumbersome form; we present just those of its terms that are needed to evaluate the first 
two terms of the asymptotic form x: 

$*(x)/s=2a,"K{(g,g,) +s[a?&(gW - &Q&(g,) - 
2-%a?Ki(m,'g,*) + 'lrA,c?Li(gJ + (- l)'aifKi(g,g,g,)l + 
%*(Q + e%*(ml, ma, E) + c(a) 

g,=ln,- m,', g,=m,; xi=xi(In,', 1) V/(m,, mi,m,) 

Li (f) = 1 xif In k2 + ma%) dm,‘, Ki (f) = S xif (g,* + mz2)-’ dm, 

Integration here is performed from -p(1) to p(1), 'pJ,$,* are independent of ml, m,, 

(Pii’? *I* depend linearly on m,,m, (these components vanish in the calculation of the first 
two terms of the asymptotic form on differentiation by means of (1.8), taking (1.9) into 
account); s and t run through the values 1 and 2. 

Assuming that 

P(r)=PO(m,,O +ap'(m,, 1) +0(B), XEG, (1.11) 

and taking account of (1.8) and the form of the asymptotic forms (1.9) and (l.lO), we seek 
the asymptotic form x (ml, 1,~) as e-+0 in the form 

x (m,, 1, s) = s [x0 (ml, 1) + &x1 (m,, I) f 0 &)I (1.12) 

Substituting the asymptotic form (1.9)-(1.12) into (1.8), determining the limits of the 
integrals K and L as m,-+O (to do this the latter are expressed in terms of the convolution 
of generalized functions dependent on the parameter m,) and equating terms of the same order 
' E, we obtain integrodifferential equations for x0,x1. In writing them we use an ortho- 
izrmalized s-dependent 'triplet of vectors ~'(m,, 1) = a1 (ml, I), y2(m,,1) = n(m,,I), y3 (m,,L) = 
Y’ x YS governing, respectively, the transverse , normal to the surface, and longitudinal 
directions at each point of the crack surface. (Note that because of twisting of the crack 
generally y2 (ml, 2) # ue (I) and ys (m,, 1) # as (1) for m, # 0.) 

If the quantity xi0 (ml,Z),xil(ml,l) is introduced such that 

x(m17 I, a) =a Lx? (ml, 2) + axi1 (ml, l)]yf(mi, 1) + 0(e2) 

i.e. xio=(xo,ai) and X,l=:(Xl, a'), Xil= 
(1.13) 

(Xl, d) - (- i)hn,A,(x”, as-j) (j=2, 3), 

and in an analogous manner, the quantities Pi0 @%,I) and pi’(m,,l), then the desired integro- 
differential equations are written in the form 

2 (I - v8is) P (Xi”), m,m, = BP+’ 

2 (f - ygiS)p(xil),,,,,=~pi* + Hii 

(1.14) 

where the operators P and Hii are defined as follows: 

P(T)= S (Ph’, l)InIm,-mm,‘Idm, 
--P(l) 

Hii = (1 - V6ts) Ad’,m,, H,, = -H,, = (1 - 411) A, P,, 

H,, = -H,, = --2AsP.m,, H,, = -If,, = -2vP,,,, 

Relationships (1.14) obtained for m,< p(1) are equations of the plane and antiplane 
problems for a rectilinear crack , as might have been expected, and can be solved successively 
in quadratures. In the special case of a crack of plane planform (cp = z = A, = A, = 0) Eqs. 
(1.14) agree (to an accuracy of the order under consideration) with the equations obtained 
earlier /l, 2/. In conformity with the above, (1.14) possess the property of "being local". 

It can also be confirmed (by using (1.14) and the symmetry or antisymmetry of the 
integrodifferential operators P,,,,, J'.,,m,, P,,,I in the sense of the scalar product in 
L,(G) that the form of the operators Hf, (particularly the coefficients (1 -VISE,) A, in 
the diagonal terms as well as the symmetry (antisymmetry) of the non-diagonal terms) ensures 
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the validity of the Betti theorem in the first two terms of the asymptotic. In addition, this 
confirms the correctness of (1.14). 

Representing the solution of (1.14) in the form (as in /I, 2/) 

we obtain for the stress intensity coefficients (SIC) of the normal , transverse, and longitudi- 
nal modes Kl’, KS*, K,* 

K$jK"= Q: + u (E)< KfJP = & Q$ - E (1 - v)-’ p’Q$ $- o(e), 

K$,/K@= +Q$ + e(l - Y)P’Q? + O(E), Kf= Ki(+p(l), I, e), 

Qf=Qi(+-p(l) i 8) KO=I/ii@@. 

(1.16) 

The appearance of terms with p'(l) in (1.16) is caused by the fact that for cracks with 
varying width (p'(L)+ 0) the d irection along the crack contour does not coincide with the 
direction of the vector y" (&P (l), I). 

Starting from the relationships (l.14) and (1.16) and taking into account the geometrical 
meaning of the quantities Ai, the dependence of the displacement jumps and the SIC on the 
"local" geometry parameters and loads can be described qualitatively; a change in the load 
and width of the crack during motion along the crack results in interaction of the longitudinal 
and transverse modes; rotation of the crack in its plane results in redistribution of the 
displacement jumps'and stress intensity coefficients ovew the crack section (separately for 
each mode); flexure of the surface results in interaction between the normal and transverse 
modes; and twisting of the surface results in interaction between the longitudinal and trans- 
verse modes. 

We present asymptotic formulas for the displacement jumps and SIC for certain typical 
load cases. According to (1.15) and (1.161, for this it is sufficient to give an expression 
for Qi. 

.A crack subjectedtointernal pressure p. Inthiscase p (ml, I)= pn(m,,Z) and we obtain 
from (1.20) and (1.21) 

Q1 = '/a(* - 4~) A,*. Va = p + ‘i, AZ+, Qs = f/t As*, A,* = &pmlAi (1.17) 

Therefore (unlike the crack of plane planform) , not only normal but also shear jumps in 
the displacement occur under the effect of internal pressure, where the magnitude end even the 
sign of the transverse displacement jumps depend substantially on Poisson's ratiov. because 
of the presence of the factor (1-4~) in (1.17). 

A crack with unloaded edges in a stress field caused by certain loads at infinity. In 
this case the state of stress and strain of an elastic medium is represented in the form of 
the sum of two elastic solutions: the state of stress and strain when there is no crack (with 
the stress tensor o"(x)) and a perturbation caused by application of the forces P= emn to 
the crack edges. Taking into account that for XE G, 

urn (x) = em (R (1) + Em@ (1)) = am (R (1)) +&m& (R (1)) + D (e) 

p(x) = em (R (I)) ~~(1) f E%OfDl (R (l))aa(l) -E/?&&# (R (1))a3 (1) + D (E) 

(where, the derivatives are taken in the local Cartesian coordinate system defined by the 
directions a'(l)), we obtain from (1.16) and (1.17) 

Ql(nl, 1, e) = 3; (R (1)) +'/ten~lQ~* (1) (1.18) 

Qi*(l)= $I - Y(1 - v)-'5& +'/a(1 - 4%) ‘4,s; -.4& 
ca 

The values of the stress components and their derivatives in the last three equalities 
are calculated at the point R(l). 

If the external stress field is homogeneous (aw (z)= I?' = co&), we have 

Q,* =. 'is (t - v)-'{(I - 3~) A,o,,- + (i - 3~ + 4u2) Alo,,- - (l.iB) 
-2vA,o,,- + 2A, [vo,~” - (1 - v) o~~@=J} 
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Formulas (1.18) and (1.19) show, in particular, that during torsion of the crack surfaces 
the external stress components u,~~,u~~,cJ~~~ which do not perturb cracks of planar planform, 
start indeed to exert an influence on the displacement jumps and the SIC. 

2. The axisymmetric problem of a crack on a cylindrical surface. To verify 
the asymptotic formulas obtained above and to refine the influence of the crack surface 
curvature on the state of stress and strain, the problem of an axisymmetric crack on a 
cylindrical surface subjected to axisymmetric loads was analysed in greater detail (see the 
figure). The crack surface is determined in the cylindrical r,~, z coordinate system by the 
relationships 1 z 1 <h, r = R, where 

k (1) = l/R,p (I) = R, E = 
h/R, A, (1) = k (I), A, = 
A, = 0 

m1 = :e_‘, a’=e,, a2 = e,, 
a3=eq 

the load components p1 = pz, pa = pr, p3 = pc and the displacement 
jumps x1 1 XI, xr = x,,Xs = xg are considered to be dependent only 
on the s coordinate. In this case, by integrating with respect 
to cp in (1.7) and letting r+R in (1.6),exactone-dimensional 
integrodifferential equations of the problem can be obtained. 
The fundamental, most awkward, part of the calculations in 
deducing the above-mentioned equations was realized by using an 
electronic computer with the algorithmic language REDUCE-3 which 
enables algebraic manipulations to be performed in symbolic form. 
Consequently, equations of the following form are obtained 
(integration with respect tos',is between the limits -h and h): 

5 K,, (z - z’) x; (z’) dz’ = 2nDp-‘p, (z) 

s 
Kij (Z - z’) X; (2) dz’= $- f3pi (z) (i, j= 1, 2) 

Kn (2) = [(c-l - 5) E + WI &, K,, (z) = [(c-;’ + IS<) E - 
SW + 16c3 (E - K)] fls 

(2.1) 

K,, (4 = {[C-l + (11 - 164 5 + (28 - 32~) c31 E + 
[(I + 8~) 5 - (16 - 24~) C"l K + 16(1 -Y) E;5 (E - K)}&” 

K,, (4 = -K,, (z) = (14 - 8v + (14-16~) Cal E - [I - 4v + 
(10 - 12~) 5'1 li + 8 (1 -v) 5" (E - K)} &3 

D=2R, 5=2/D, &=1/~1+~2 

(K = K(&), E = E(cJ are complete elliptic integrals of the first and second kinds). 
Comparing (2.1) and the asymptotic equations obtained from (1.14) for this case, we see 

that they are in complete agreement. Moreover, as might have been expected from symmetry 
considerations, problems for the normally-transverse and longitudinal loads are separated. 

For the special case of an annular crack under axisymmetric loads, (2.1) enables us to 
refine the asymptotic form of the solution (1.15) and (1.16) for small E by the construction 
of appropriate power-law expansions (in E) with any number of terms. To do this it is 
sufficient to change to the variable m, in (2.1), to expand the left and right sides in e, 
to equate terms of like order and to solve, successively, the integrodifferential equations 
obtained. 

Asymptotic displacement jumps and SIC were discussed for narrow cracks for a number of 
kinds of loads having the form of expansions in even or odd powers of E with coefficients 
dependent on h = In (16 / e), v and M = m,lR by using an electronic computer for the method 
described (from three to five terms of the asymptotic form are obtained in explicit form). 
Eqs.(2.1) were also solved numerically by the method of mechanical quadratures. When comparing 
the results obtained numerically and computed by the asymptotic formulas, the discrepancies 
in the range O<e <0,3 were not more than l-2%, which indicates the high accuracy of the 
asymptotic formulas. Good agreement is also observed between the results obtained and those 
presented in /4/ (the discrepancy is not more than 2-3%, which is within the limits of accuracy 
of the computations). 

We will describe the SIC behaviour (determined as a result of calculations) for certain 
kinds of loads. 

In the case of a constant longitudinal load ~~(z)=A,=const, the dimensionless SIC 
K,/K,“(K,o=p~~;Ti;, increases considerably as e increases (Figure, curve 1). Under loading 
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by a constant internal pressure P?(Z) = I& = const(p,(z) = O), the coefficient KIIKlo (Klo = p?l/;;h) 

conversely decrease as e increases, where the greater the v*the more rapid the decrease (see 
the figure, curve 3; the upper, middle, and lower curves correspond to V= 0,1,0,3 and 6,s). 
Here K,lK1o is much less than unity, increases in absolute value as 6 increases and depends 
very much on Y (which is in agreement with (1.17)). 

In the case of a constant load along z, by solving (2.1) for x,.,x~, for given .~(a)== ,T= = 
const, pr (I) = 0, we obtain a non-zero expansion x r which is an odd function in s and therefore 
negative in a certain domain; such a solution has physicalmeaning only if the crack was first 
exposed or loaded by an additional exposing action (otherwise the interaction of the super- 
posing crack edges must be taken into account). It is interesting to note that for the 
solution under consideration ~~/~~O(~~*~ p,l/;;hf is practically independent of E and v (the 
figure, curve 2). 

We construct the approximate solution for the case of a constant load in z taking the 
superposition of the crack edges into account assuming no friction between them. The problem 
here becomes the following: for lzl<h it is required to find functions +(z), xz(z),p,(z) 
satisfying the first two equations in (2.1) (with ~~(z)=~~=~onst) and the conditions 

xr (2) > 0, pr (2) > 0, Xt (2) Pr (2) = 0 (=) 
(The normal force j%(z) occurs because ofsuperpositionof the edges). For small E we seek 
the approximate solution in the form 

x2 (Q, 9 = 8 [x,0 (ml) + E%Q (mJ + 0 (EP)] (2.3) 
f+ (ml, E) = VT' (ml) + 0 (e) 

The location of the superposition zone depends on the signs of pr and i--4% furthermore, 
to be specific we consider p,>O and ~)0,25 (the approximate solution is constructed anal- 
ogously for the remaining cases). Eqs.(l.l4), (2.2), (2.3) yield 

XI0 = 2 (I - v) cL-‘p*o 1/F - ml* (24 

2p (x,‘), tnlll(, = BP,'_ BP, (1 -~~)~l/W) 

xr'> 0, p,',, 0, 'Lr'I$' = 0 

The second and third relationships in (2.4) determine the problem of a plane rectilinear 
crack with superposition of the edges whose solution, as is known, is unique. It is not 
complicated to seek this solution by starting from the assumption that the superposition 
domain is the segment f--R, al. Then ~2 (ml) = 0 for ml E I-R, al,prl(ml)= 0 for ml E [a,R) and 
from the second Eq. (2.4) examined in [a, RI, we find sT1 on Ia,RI, and then-pp,' on I--R,al 
from this same equation. It remains to seek an a such that the two equations (2.4) are 
satisfied. Such a value turns out to be G= ---R/3. hence 

i 
-(4 - V)P_'(l- 4%) Ii-'(mri_ R/3f"(R- rn#, 

%'= 0, --R<nl<--R/3 
-R/3$ rnl<R 

p'" 0, -W<m,<R 
r -+&I-4~) R-1 (2R/3 - ,s)C/(R/3+ml)/(rr~l--), --R<n~$-- R/3 

Using (2.5) and (2.1) we obtain 

The external load in the problem is independent of zI consequently, the specific increment 
of the total potential elastic energy of the medium SWISS as the crack width 2h increases 
is independent of whether it would be achieved as a result of advancement of some contour 
(z= h or z = --h) . Therefore, in conformity with the Irwin formula, the quantity GWISS. is 
identical on the contours z=&h and equals 
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6W/6S = (1 - v) ny;l (Ka”)* (i + e= [-3h/8 + 17/16 + (1 - 4~)~/27] + o @)I 

In conclusion, we note that the action of even a small additional external pressure 
'P = e K,PZ on a crack edge results in a change in the superposition domain. By reasoning anal- 
ogous to that presented above we obtain that the superposition domain is defined by the in- 
equalities -l<M<K, where K = -I/, - 8K,/13 (4v- i)] and for the exposure we have 

xyz 
l/o (1 -v) p-1 (4~ - 1) pzh 1/l - ,M (M - K)“‘, K < M < 1 
0, -i<M<K 

For p>&Kplpz. K,‘= v--l/, the crack is completely open , and completely closed for P < 8Kp9pz. 
K,* = -2 (v - V,) 
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GREEN'S FUNCTION FOR THE BENDING OF A PLATE ON AN ELASTIC HALF-SPACE* 

V.P. OL'SHANSKII 

Improper Woinowski-Krieger integrals /l/ expressing the deflections of an 
infinite plate and the contact reactions of an elastic half-space subjected 
to a unit normal force are considered. Elementary formulas to calculate 
the quantities mentioned in the neighbourhood of the point of application 
of the load are obtained from the power series expansion with a logarithm 
by Watson's method. The results of calculations using these formulas are 
in good agreement with the results of a numerical integration of quadratures 
/2/: The-analytical representations obtained for Green's functions are 
convenient for utilization as kernels of the integral equations when 
solving contact problems for the interaction of bodies, one of which is 
reinforced by a thin covering. 

Under the action of a unit normal force at a point with coordinates (~1, arl) on an infinite 
plate lying without friction and adhesion on an elastic half-space, the deflections w and 
contact pressures p at a point with coordinates (2. Y) are expressed by the integrals /l, 3/ 

w = I' (%D)-$, p = z-2p. (0 

i - 

s 
Jio W) 

100 = y h9fldh 
1 - Jo(W~ 

PO = T 
s hsS_l CCL 

0 0 
p = 1-l ((I -q)* + (y - y#)“, D = Eh* (12 (1 - Y’))-’ 

1 = (2DE,-’ (1 - v,l))“S 

Here E,v are the elastic modulus and Poisson's ratio of a plate of thickness h while 
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